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This paper extends the treatment of discontinuities introduced by
the author in [13], [14], and [15] to the two dimensional case.
The main idea refies on the fact that on each side of a discontinuity the
computations draw information from the same side. A numerical
method for ordinary differential equations madeling the movement of
the discontinuity curve is incorporated into the algorithm to compute
discontinuity positions, The conservation feature of the treatment is
studied for the case of an isolated discontinuity. Finally, we study two-
dimensicnal scalar systems and systems of conservation laws and
display some numerical resufts when our treatment is applied. © 1993
Academic Press, Inc.

1. INTRODUCTION

Front-tracking methods are distinguished from capturing
methods by the choice of a lower adaptive grid, the so-called
front or interface, to fit the discontinuity occurring in the
solution. This front (either a point or a curve in 1D or 2D,
respectively) is associated with physical waves in the solu-
tion. It is implicitly defined from the solution and evolves
dynamically with it. Eearly proposals for front tracking
are described in Richtmyer and Morton [207, and its
realizations in one space dimension can be found in
(11, 16, 20, 227. A more challenging task is its realization in
two space dimensions due to geometric and dynamic com-
plications. Since 1980, J. Glimm and his coworkers have
done extensive work to develop two-dimensional front
tracking methods and applied them to different problems of
fluid dynamics {see [2, 3-8, 97).

In [13-15] we develop a front tracking technique in the
one-dimensional case, which is called the treatment of dis-
continuities, and apply it to conservative difference schemes.
Its main idea is that in the field of the discontinuity the com-
putation only uses information from the same side of the
discontinuity. In the scalar case, this is done by doing
the following: at the grid points located on the other side
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of the discontinuity, we replace the original data by its
extrapolated values from the other side, which are used in
the numerical fluxes. In the system case, Riemann problems
related to the original and extrapolated data are solved to
obtain the data which replace the original data. By doing
this, we do not have flow states on the discontinuity fronts.
Instead, the whole computation of the numerical solution
still proceeds on the regular grid, and the algorithm is much
simpler than that of other one-dimensional front tracking
methods. Also, several special treatments have been
developed to handle the interactions of discontinuities.
Moreover, the conservation feature of the treatment has
been studied.

In this paper we extend the treatment developed in [13]
to two space dimensions. We first want that the two-dimen-
sional extension has no flow states on discontinuity fronts

.and then that the computation of the numerical solution

proceeds on the regular grid. We also want the extension to
be as much dimension-by dimension as possible.

The paper is organized in the following manner: Section 2
briefly recalls the treatment in one space dimension; Sec-
tion 3 describes the treatment for an isolated discontinuity;
Section 4 discusses the conservation feature of the treatment
for an isolated discontinuity and shows that in the two-
dimensional scalar case the numerical solution is almost
conserved. Section 5 describes the treatment of interactions
of discontinuities; Section 6 describes the programming of
the algorithm; and Section 7 displays some numerical exam-
ples of the treatment,

2. BRIEF RECALL OF THE TREATMENT FOR
ONE SPACE DIMENSION

In this section, we briefly recall the treatment in the one
space dimension introduced in [ 13]. The partial differential
equation under concern is

w,+ fu) =0 (2.1a)
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with the initial condition

ulx, 0} =uolx), (2.1b)
where both i and fare vectors. Assume that the underlying
finite difference scheme is a general conservative scheme:

“}Hl =“f*)v(f;+1/2“ff_1/z)a (2.2)
where ! denotes the numerical solution at the grid point
(Xj! f”),

Sl =0y fhs e 7 ) (2.3)
is a consistent numerical flux depending on 2k variables,
A =1/h is the mesh ratio, and 7 and # are the time and space
increments, respectively.

We denote the grid cells that contain discontinuities as
the critical cells. For an isolated discontinuity, when (2.1} is
scalar, the treatment is carried out generally as in the four
steps below:

(1) Extrapolate the numerical solution from each side
of the discontinuity to the opposite side, thereby obtaining
a set of extrapolated data:

n, + R+ ", — ", —

uj;_k,..., uh ’uj£+1’ . uj1+k+\’

(2.4)

where [x;, x; ,,] is the critical cell, the data with “—"
come from extrapolanon from the left to the right, and the

data with “+7 are just reversed (see Fig. 2.1).
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FIG. 2.1. The numerical solution at the nth level has an isolated

discontinuity in the ecritical cell [x;,x; ., ], on each side of which the
numerical solution is smooth. £ is the discontinuity position in the critical
cell. The numerical solution is extrapolated from each side to the opposite

side to obtain a set of extrapolated data.

DE-KANG MAQ

{2} Compute the numerical solution on each side of the
discontinuity at the new level by using the extrapolated data
from the same side. That is, when x, < x, ,

u;'H-] =uj— )(f:+ 1/2 ff':i,rz), (2.5)
where
T =S s W W W) (26)
and when x;> x, ,
uyt! =u; "L(fhu/z f:;”f;;z)s 2.7)
where
T = O st ) et ) (28)

(3) Compute &' the discontinuity position at the
new level by discretizing the Hugoniot condition. For exam-
ple, it can be

i
ér!+] €;r+f( ) f( ) (2'9)
u [5"
where £” is the discontinuity position at the level », and ui,,,
and u’. are the extrapolated data of the numerical solution
from the two sides at location £",

(4) Set the critical cell for the new level according to the
new position of the discontinuity. If £"*' remains in
[x;, X, . ], the same cell will be the critical cell at the new
level. If £7* ! moves into one of the adjacent cells, then this
cell becomes the new critical cell, and the numerical solution
computed at the grid point crossed by the discontinuity are
updated by the extrapolated data appropriately.

When (2.1) is a system of equations, the treatment is still
carried out in four steps. However, Riemann problems
related to the original and extrapolated data are solved and
proper states are chosen as the data on the opposite side of
the discontinuity in the computation of the numerical solu-
tion. For example, to compute the data that will replace the
right side, original data for the left side numerical fluxes in
step {2), we solve the Riemann problems related to u] [,
and ] |, w7, and u} 5, ... If the discontinuity is a left
shock, we pick the extrapolated data; if the discontinuity is
a right shock, we pick the right middle states; and if the dis-
continuity is a contact discontinuity, we pick the left middle
states. In doing so, the treatment only affects the field of the
discontinuity.

Several technigues have been developed to handle the
interactions of discontinuities. Among them is a so-called
“stacking treatment” which deals with the critical cells
stacking in the same grid cell (see [137).
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3. TREATMENT OF ISOLATED DISCONTINUITIES
IN TWO SPACE DIMENSIONS

In this section we describe the treatment of isolated dis-
continuities in two space dimensions. The equation under
concern 1s

o+ fu), + glu), = (3.1a}
with the initial condition
H(X, )’,0)=”o(-’f, y): (31b)

where all u, ug, £, and g are scalar.

We first need to extend the concept of a critical cell to the
two-dimensional case. The critical intervals are those that
interact with the discontinuity curve (refer to Fig 3.1).
There are two types of critical intervals, the horizontal
critical intervals on horizontal grid lines and the vertical
critical intervals on vertical grid lines. A discontinuity in the
numerical solution is represented by a sequence of horizon-
tal and vertical critical intervals; all of them contain an
intersection point of the discontinuity curve and a grid
line. We denote these interaction points as the discontinuity
positions.

For an isolated discontinuity, the treatment is still carried
out generally in four steps as in the one-dimensional case
described in Section 2, i.e.,

E
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FIG. 3.1. Discontinuity curve C is represented by a group of critical

intervals, which are indicated by horizontal and vertical braces. 4, B, C, ...
are discontinuity pesitions in the critical mesh intervals. The two sides of
the numerical solution separated by C are denoted by “—” and “+.”
respectively.
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{1} compute the data that will replace the original data
on the other side of the discontinuity;

(2} compute the numerical solution on each side of the
discontinuity;

(3) compute discontinuity positions at the new level by
discretizing the Hugoniot condition;

{4) set the critical intervals at the new level according to
the new discontinuity positions and update the numerical
solution at grid points that the discontinuity crosses.

However, due to geometric and physical difficulties, the
two-dimensional treatment is more complicated than its
one-dimensional version. In the following subsections, we
shall address these difficulties and describe how we shall
overcome them. From Subsection 1 through Subsection 7,
we shall only study the scalar case, while in Subsection 8 we
shall extend the treatment to Euler’s equations of gas
dynamics,

1. The Underlying Schemes

We choose as underlying schemes the predictor—corrector
methods of lines approximating (3.1) (see [17-19, 21] for
the methods of lines), i.e.,

u’!}’;‘lﬂ u “")u g(un).i‘j (periCtO[)
ﬂ?’flzu"“’"l/z (un+1,"2)
7 fﬂ (32)
— L w7, (corrector),
Wit = vl
where
Li(u );:,-:5(fs+1/2,j_ff_1/z,j)
(3.3)

[N

Lg(“"]s,jz_ (gﬁj+1f2_

: &)

are approximations to 1f, and l1g, at the point (i, j ), with
the fluxes /7, ,, ;and g7, , |, defined as

f?+ l_l2._f=f(u?—k+l jroee i""?-ﬁ—k,j)

3.4
8l revyn =8 ipys o U i)
which are consistent in the sense that
flu, . u)=flu)
(3.5)

&lu, ..., u)= glu).

We would like to point out that the discussion in this paper
applies to any types of Runge-Kutta methods for lines as
well.
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The reason for choosing this type of difference schemes as
underlying schemes is that we can avoid two-dimensional
extrapolation and still obtain second-order accuracy for
both the numerical solution and the discontinuity positions,
This wiil be shown in the sequel.

Since the underlying scheme is essentially a combination
of two forward Euler schemes,

“?,;1 (ff+m,, f,—l,Q.j)

}' o~ AH
—E{gi,j+]j2_gi,j—1/2)9 (3-6)
it is suffictent 1o build vp the treatment in the case of the
forward Euler method.

2. Implementations of Step | and Step 2

13 "

Denote with and “+” the two parts of the
{x, t)-plane separated by the isolated discontinuity, as
shown in Fig. 3.1. We prepare the extrapolated data in step
(1) as follows: For a horizontal critical interval, extrapolate
the numerical solution along the x direction, and for a
vertical critical interval, extrapolate the numerical solution
along the y direction. In doing so, we obtain two sets of
extrapolated data, ic., the extrapolated data along the x
direction with a subscript “x” and the extrapolated data
along the y direction with a subscript “y

In Step (2), we replace the original data on the opposite
side of the discontinuity by the extrapolated data obtained
above in the numerical fluxes. For example, the numerical
solution evaluated at the point P(x,, y;), which belongs to

the *—" side, 1s computed as
un+l " é(f‘n‘— _fn’7 )
W 2 i+ 102, [T
L G i) (3.7
2(g'u+l/2 &l i—12h .7
where
n
.+1/2; f(uf_k_f,l o Ui g
= =
Ui+ 1,7 ux.i+k,j) (3.8)
and
g5, i1 g(“”, kb 1e s D i
Uy ey oo Wyli e i) (3.9)

and the data indexed with “— are extrapolated data from
the “—" side to the “+” side. For another example, the
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numerical solution at the point P,(x; , ,, ;}, which belongs
to the “+ 7 side, is computed as

nt+l n. + on, o+
Wi =W g (f!j+3,’2_; i|+1f2,j)

-3 Eriivip— g‘?.'lru—wz)’ (3.10)
where
:+1/2;’ f( \::—k+l Jroee ”ti:f.j’
uy F 1 ”i+k.j) {3.11)
and
8;l+11+1/2 g(”} ALkt 1s e u;::T+l.j—I’
UG s e By 1 g k) {3.12)

and the data indexed with “+ " are extrapolated data from
the “+ " side to the “—" side. In doing so, the computation
on each side of the discontinuity uses only information from
the same side.

Since all the parameters in for ¢ are on the same horizon-
tal or vertical grid line, we do not require extrapolated data
along diagonal directions. This is the benefit of using this
type of underlying schemes; otherwise, two-dimensional
extrapolation will be involved.

Because the extrapolated data are obtained in such a
dimension-by-dimension fashion, the extrapolated data at
the same point obtained from different directions are dif-
ferent. Therefore, different extrapolated data will be used at
the same grid points in the computation. Nevertheless, the
numerical experiments show that this does not produce
problems. The reason is that these extrapolated data are
essentially “virtual” to the computation since shocks have
a characteristic-converging feature and contact discon-
tinuities have a characteristic-paralleling feature, by which
the solution on each side of the discontinuity substantially
obtains information only from the same side.

3. Computing Discontinuity Positions

The implementation of step (3), i.e., computing discon-
tinuity positions, is easy for the one-dimensional case, since
the Hugoniot condition in that case is an ordinary differen-
tial equation. However, it is complicated for the two-dimen-
sional case since the Hugoniot condition is now a partial
differential equation involving the normal vector to the dis-
continuity curve (see [23]). If we discretize the Hugoniot
condition along the normal direction in order to compute
the discontintuity positions, just as is done in most tracking
methods, the discontinuity positions wiil go to the insides of
the grid cells at the following level. Hence, it is difficult to
maintain the computation on the regular grid.
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In this paper we discretize the Hugoniot condition along
the horizontal and vertical directions, instead of the normal
directions. We compute the local horizontal and. vertical
velocities of the discrete discontinuity positions and use
them to track the discontinuity positions along the grid
lines. In doing so, we need no information about the
numerical solution inside the grid cells.

The following theorem, which is derived from the
Hugoniot condition, gives the formulae to calculate these
two velocities.

THROREM 2.1.  On the (x, y)-plane, an intersection point
of a discontinuity curve of (1.1) with a horizontal line satisfies
the ordinary differential equation

ox
0x_olf1+ple] A1)
a1 ofu]

and an intersection point of the discontinuity curve with a
vertical line satisfies

oy _a[f1+Blg]
= (3.14)
at Blul

where x and y are the coordinates of the intersection point,
Lv] indicates the jump of the quantity v across the discon-
tinuity, and («, ) is the normal vector to the discontinuity
curve al the intersection point.

Progf. Assume § is a discontinuity surface of (3.1a) in
the three-dimensional {x, y, 1)-space, which cuts a horizon-
tal plane at time ¢ by a curve C (see Fig. 3.2). At a point p
on C, the two states separated by the discontinuity satisfy
the Hugoniot condition

n-([u], [f]. [g])=0, (3.15)

(2,8}

X

FIG. 3.2. Discontinuity surface S cuts a horizontal plane by & curve C,
(2, B) is the horizontal normal to S at p.
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where n is the normal vector to S at p (see [237). This also
means that the vector v, = ([«]1, [ /], [g]) is tangential to
S. Since the horizontal normal vector to C at p on the
{x, y)-plane is (o, f), the vector v,=(0, —f, ) is also
tangential to S. Therefore, the vector

vixvy=(—alf1-Blgl alul, flx])  (3.16)
is perpendicular to § at p. This indicates that S has the
differential form

(alf]1+BlgD dr=aluldx+fluldy. (3.17)

By taking x and y to be constants, we obtain {3.13) and
(3.14). This completes the proof.

4. Calculation of Normal Vectors

The normal vector («, ) is required in computing the dis-
continuity position. This can be numerically computed by
interpolating nearby discontinuity positions. Assume that A4
is a position of the discontinuity in a horizontal critical
interval (as shown in Fig. 3.1). If choosing (A4, B) as the
interpolation stencil, one can compute (o, ) with first-order
accuracy as

(3.18)

where (x,, ¥,) and (x g, y,) are the coordinates of points A
and B, and r 4 is the distance between 4 and B, ie.,

Fap=({x4— XB)Z +{ys— yﬂ)z)uz'

if choosing (A4, B, C) as the interpolation stencil, one can
compute (a, f) with second-order accuracy as

_ Ya— Vg Ya—JYc
= —1Fac — 48 (rsc—r.as)
c

rap ¥4

(3.19)

X4—Xpg

- X4—X
= C)/(rAC_rAB)'
Tan Fac

—Fan

p(rac

However, the choice of the interpolation stencils is critical
to the stability of the method. Numerical experiments show
that arbitrary choice of the stencils, for example, picking
positions symmetrically on the left- and right-hand sides of
A, may produce wiggles in the discontinuity curve and
finally spoil the whole computation. In this subsection, we
will give a so-called "upwind” way for choosing the inter-
polation stencils, which will keep the computation stable.
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According to (3.15), the movement of a discontinuity
curve of (3.1} at each point is a combination of two
movements, a horizontal displacement with speed [ /]/[u]
and a vertical one with speed [ g]/[«]. Based on this obser-
vation, the interpolation stencils can be chosen in an
upwind way. For example, to compute the normal vector at
point 4, we first evaluate 5, = (g{u’,)— glu'))/ (v, —u'),
which is an approximation to [g]/[«] at A, where &, and
u’, are the extrapolated data from the left and right sides
along the x direction at point A. If s, > 0, which indicates
that the discontinuity at this point moves vertically upward,
we choose A, B, C, ... as the interpolation stencil; otherwise,
54 <0, which indicates that the discontinuity at this point
moves vertically downward, we choose A4, D, E, ... as the
interpolation stencil. The vertical critical intervals is treated
similarly,

When the stencils are formed for only two points, it is
easy to see how this choice of stencils eliminates wiggles and
stabilizes the computations. For example, assume that
5,>0and 4 deviates a little left from its correct location.
This deviation decreases the o and increases the ff in (3.18),
so that it increases the x speed in (3.13). Thus, 4 moves
faster than expected, and at the following level the wiggle
disappears. On the other hand, choosing (4, D) as the
stencil will amplify the wiggle.

5. Handling of Triangles

The discontinuity curve may intersect a grid cell obliquely
so that it cuts out a triangle. An exampie is displayed in
Fig. 3.3, in which the discontinuity curve C cuts out the
triangle 40A4B from a grid cell 7. Particular handling of
these triangles is described below:

First, when the triangle is very small, the discontinuity
positions in the two related horizontal and vertical critical

Na o

CM,

FIG. 33. Discontinuity curve C intersects the grid cell T obliquely and
forms a triangle OAB. CM , and CM, are the horizontal and vertical
critical mesh intervals whose movements should match each other.
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intervals, e.g., 4 and B in Fig. 3.3, will be very close to each
other. Therefore, if we successively choose discontinuity
positions for the interpolating stencils in computation of the
normal vectors, some stencils will have these two closely
neighboring points. This type of stencil may not be good,
since these two points together with other points in the sten-
cil may not have a smooth pattern. To avoid this type of
stencil, a criterion based on the observation of distances
between adjacent positions is set up in choosing points.
Thus, when A and B in Fig. 3.3 are too close to each other,
we skip B and choose C as the next point in the stencil.

Second, the movements of the two related horizontal and
vertical critical intervals must match each other to keep the
continuity of the discontinuity curve. Denote the two
related horizontal and vertical critical intervals containing
A and Bby CM , and CM ,, respectively. We stipulate that
only the following two cases are valid: either both CM , and
CM, cross over the grid point O to advance to their
adjacent intervals, or none of them does. There should be
different ways to accomplish it. In this paper we simply
stipulate that, if one of the critical intervals advance to
the adjacent interval according to its new discontinuity
position, the other will do so too, even though its new
discontinuity position might be a bit out of its critical
interval at the new level. The numerical experiments show
that such a little deviation of the discontinuity positions
from their corresponding critical intervals does not cause
any problems.

When both 4 and B in Fig. 3.3 cross over O, the numeri-
cal solution at O is updated by the mean value of the
extrapolated data from the x and y directions, respectively.

6. Cases of Small o or f§

When one of the components of the normal vectors, i.e.,
« or f3, is very small, which means that the discontinuity
curve is almost horizontal or vertical, there are some
geometric difficulties that do not occur in the one-dimen-
sional case.

First, the moving speeds evaluated by (3.13) and (3.14)
might be very high. Therefore, the discontinuity positions
might cross over more than one grid interval along grid
lines within one timestep, no matter how the mesh ratio is
restricted. Fig. 3.4a gives such an example, in which the
horizontal critical interval CM , moves two grid intervals to
the right when the discontinuity curve advances from C” to
C"*! within one timestep.

According to the discussion in the last subsection, if one
of CM , and CM , advances across O according to its dis-
continuity position, the other will do so too. Since a is very
small, 4’s new position may have a rather big error; there-
fore, it is not proper to decide in the same way whether
CM , and CM . should move across O,. We stipulate that
if CM . advances across O, according to C’s new position,
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FIG. 34. (a)Critical mesh interval CM , advances two mesh intervals

to the right when the discontinuity curve advances from C" to C". (b} Criti-
cal mesh intervals CM , and CM 5 are lost when the discontinuity curve
advances from C" to C"*'. (¢} Critical mesh intervals CM , and CM p are
obtained when the discontinuity curve advances from C" to C"*!, Their
discontinuity positions are chosen to be their middle points.

then CM , will do so too; otherwise, CM , will not, no
matter where A’s new position is. In doing so, we let CM 's
movement dominate the situation. The cases for grid points
0, ... are treated in the same way.

Il CM , crosses O, the numerical solution at this point
will be updated by the extrapoiated data along the y direc-
tion. Also an adjustment of 4 is needed if it deviates too
much (say, more than one grid interval) from its critical
interval at the new level, since this will cause some problems
in computing the normal vectors. In this paper, il 4 deviates
too much from its critical interval, we simply put it back
into the critical interval.

Second, the discontinuity may lose critical intervals when
it propagates. Figure 3.4b gives such an example, in which
the critical intervals CM , and CM; are lost when the
discontinuity curve moves from C" to C" .

Third, the discontinuity may obtain new critical intervals
when it propagates. Figure 3.4c gives such an example, in
which the critical intervals CM , and CM g are obtained
when the discontinuity curve moves from €™ to C"* . There
would be several ways to determine the discontinuity posi-
tions for the newly penerated citical intervals; however, in
this paper we simply choose their middle points as the
discontinuity positions.

The adjustment and choice of discontinuity positions
described above are not very accurate, Therefore, they may
produce wiggles for the discontinuity curve. However, the
numerical experimenis show that the “upwind” choice of the
interpolation stencils described in Subsection 4 will smooth
the curve soon afterward.
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7. Implementation of the Treatment for Predictor—Corrector
Underlying Scheme

We implement the treatment in both the predictor and
corrector steps. However, only in the predictor steps will the
critical intervals move to other intervals. In the corrector
steps the critical intervals do not move, no matter where
their discontinuity positions are.

For a critical interval, the predictor step gives a discon-
tinuity position &"*'? and the corrector step gives a
position "+, The discontinuity position at the following
level is finally given by

én+l=%(§n+gn+1)' (320)

When a critical interval moves to other grid interval in a
predictor step, the numericai solution ] ; during the correc-
tor step in (3.2) should be replaced by the extrapolated data
from the same side of the discontinuity at the grid point
crossed over by the discontinuity curve at level n.

If the forward Euler scheme is second-order accurate in
space and the treatment uses the second-order extrapola-
tion, then the numerical solutions and the discontinuity
paositions are also second-order accurate, provided that the
exact solutions to (3.1) are piecewise smooth.

8. Extension of the Treatment to Euler Equations of Gas
Dynamics
For the Euler equations of gas dynamics in two space
dimensions, u, f, and g in (3.1) are

U= (p-: st My: E]s

fw)y=q.u+(0,P,0,q.P), (3.21a)
glu)=q,u+(0,0, P, q,P),
where
P=(y-DE—-10¢"), q'=qi+q,
? * (321b)
Mx:pgx’ M_v=pq_v>
and
E
c2=(y—1)(H—%qz), H=—~%£, {(321¢)

where p is density, M, and M, are x and y momentums,
respectively, P is pressure, ¢ is sound speed, and H is
enthalpy.

As in the one-dimensional case, we solve the Riemann
problems related to the original and extrapolated data to
obtain the data that will be used in steps (2), (3), and (4).
The Riemann problems are solved along the normal direc-
tions at the discontinuity positions. For example, assume
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that [x,, x, ., 1is a horizontal critical interval on the grid
line y=y; (see Fig. 3.1). We compute the numerical solution
at the grid point P;(x,, ;). To compute the data that will
replace the original data at the point (x, ,,,y;) in the
numerical fluxes, we solve the Riemann problem related to
upoyyand wy o along (at, . B7 ., ;) If the discontinuity
is a left shock, we pick the original extrapolated data;if it is
a right shock, we pick the right middle state; and if it is a
contact discontinuity, we pick the left middle state. In doing
so, we will not hinder the waves of other types propagating
away from the discontinuity.

4. CONSERVATION FEATURE OF
THE TREATMENT

In this section, we shall study the conservation feature of
the two-dimensional treatment for an isolated discontinuity
(scalar case). To do this, we first briefly recall the conserva-
tion feature of the one-dimensional treatment discussed in
[13]. The one-dimensional treatment is not conservative.
This is because the computation uses the extrapolated data
on each side of the discontinuities. As a result, different
numerical fluxes are used in some grid cells, which harms
the conservation. However, we can still- write the overall
algorithm in a conservation-like form, ie., °

Wit =l — AT = ST p)

+ Pl Pt —a), (4.1)
where fis defined as
; frope d<i
Slein= { -’lf:ﬂ . _1 (4.2)
irie J1Z ]

[x;, x; 4] Is the critical cell, the g"s, which balance the
different fluxes used in the same cells, are the local conserva-
fion errors, and the p™s transport the local conservation
errors when the discontinuity moves to one of its adjacent
cells. Therefore, the p™s and ¢™s are nonzero only in the
vicinity of the critical cell. Moreover, the p™s are nonzero
only when the discontinuity moves to a new cell. Instead of
u", u” — g™ is conserved in this conservationlike form.

For an isolated discontinuity, the nonzero p™s and g™s
are given as follows: When ¢” "' remains in the original

critical cell [x;, x; 4],
G =g+ ML= TRtk (43)
when £+ moves to the left adjacent cell,
Phove=—a;+ W —up™)
SR VAV R B SR X))
‘I;,tll —Pi—12
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and, finally, when ¢"* ! moves to the right adjacent cell,

Pﬂ+1/2 qﬂ"')( _“+1l,’2 fﬁ';uz)s
‘I:I]:ll Qj,‘*'(uj.':l“ujnu} (4.5)

+)(f1+3/2 fﬁ'f3/2)+R;,

where, R, and R, in {4.4) and (4.5) are now detailed. When
the discontinuity crosses over x;, we denote by @7 """ the
numerical solution computed at this point, using only
information from the right side, i.e.,

Sn+1, +

uJ’ 1

=upt — A ;.':3/2—.{;‘:1/2): (4.6)
and u}* '+ the extrapolated datum from the right side at
the new level. If u}*"' is updated by ﬁf“ *, R, is zero;
otherwise, if it is updated by uj*!* R, is u"“ togth
R, is obtained similarly. Obv10usly, when both the underly-
ing scheme and the treatment are the rth-order accurate, R,
and R, are of O{#") if they are not zero.

Equations (4.3)—(4.5) describe how the local conservation
error for the isolated discontinuity accumulates and com-
pensates the numerical solution. In all the three cases,
the flux difference within tﬁe cell, which is either
TS i) i (43), AT —F5 ) in (44), or
M7 tan—f i D3n) in (45), is added to the local conserva-
tion error. When the discontinuity crosses over one of the
endpoints of the critical cell, u},—uj ™~ R, or u},, —
ur ., — R, is deducted from the ‘Jocal conservation error,
which is transferred to the numerical solution by updating
the solution at nearby grid points.

The Proposition 3.1 in [13) says that if both the under-
lving scheme and the treatment are first-order accurate,
then

qh=("—x, ) —up) + O(h), (7)

and if both the underlying scheme and the treatment are
second-order accurate, then

(e, = 2 )0 40 = 87
( +(“ﬁ+1*uﬁ’:1)('§"—le)2)

2h

gih= + O(H*). (4.8)
From this proposition, we see that the local conservation
errors are uniformiy bounded when the numerical solution
is uniformly bounded. This implies that, if the numerical
solution with a finite number of isolated discontinuities
converges, then it will converge to a weak solution of (2.1).

The proof of (4.8) in [13] is long and complicated.
However, the proof of (4.7) is quite simple. It can be com-
pleted by showing that {4.7) is exact when the solution is
piccewise constant, t.e.,

g5 =(&" = x; o)1 —ug), (4.9)
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where, 1, and uy are the solution at the left and right sides
of the discontinuity. In fact, in this case the flux difference
simply reduces to A(f(ug)— f(x,)), which is nothing but
(& —E"up—u,)fh. When the critical cell moves to
the left of right, the deduction from the local conservation
EITOT 15 4, —Ug Or ugx—U,, respectively. Therefore, the
conclusion follows easily.

Now we turn to the conservation feature of the two-
dimensional treatment for an isolated discontinuity. For
simplicity, we assume that the discontinuity is almost
oblique, so that the cases discussed in Section 3.6 will not
oceur.

Obviously, the overall algorithm can also be written in
the conservation-like form

bl A

Uy g ui.j—i[ i+ 1/2_;'_.{?— i/Z.j)

on .
E (gi‘j+1/‘2 - g’:,_jm 1;2)
1
+ P i1z Pricn g
" n
T P12 Pyii—1p

n+1

+g =g, (410)
where the p™'s and ¢™s are nonzero only in the vicinity of the
critical intervals. The notations are identical as in relation
(4.11), where the x and y indexes stand for horizontal and
vertical critical intervals.

In (4.10), f and § are defined in the same way as f in the
one-dimensional case. For example, for the isolated discon-
tinuity described in Fig. 3.1, in the vicinity of the horizontal
critical interval [x,, x; ,,] on the grid line y = y,,

A f-

n _{ P12,

S22 A L
fi+ij2,j

and in the vicinity of the vertical critical interval [ y;,, ¥}, 4.1]
at grid line x = x,,

when Fi<i; @11)
when izi +1

»

when j<j,

s g
gl ia1p= { i (4.12)

PRy when =/ + L

In this section, we want to show that if we properly
choose the p™s, then the ¢™s can also be related to the dis-
continuity positions. Therefore, if the numerical solution is
uniformly bounded, these local conservation errors are
uniformly bounded too. Thus implies that, if the numerical
solution converges, then it will converge to a weak solution
of (3.1).

In the two-dimensional case, different fluxes are also used
in some intervals due to the use of extrapolated data. For a
critical interval [x;, x,,,] on the grid line y = y,, if £"*!
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either remains in the original critical interval or advances to
the left or right adjacent interval, then the flux difference
is_cither (/37— FuZip) or (F5Zia,=T5Zin,) o
f W tam =S Tap, ). Similar results can also be obtained
when the critical interval moves across several intervals.
The flux difference related to vertical critical intervals is
computed similarly.

Just as in the one-dimensional case, the local conserva-
tion errors are accumulated by these flux differences. Also,
when the discontinuity crosses over grid points, the local
conservation errors compensate for the numerical solution
to keep the conservation. However, in the two-dimensional
case, in order to let the local conservation errors match in
the discontinuity positions, the accumulation and compen-
sation should proceed in a particular fashion. The foliowing
describes the accumulation and compensation for horizon-
tal critical intervals. The case of vertical critical intervals are
similar. '

Assume that [x,, x; , ] is a horizontal critical interval
on the grid line y = y;, with normal (a7, ;, f7, ;) at the
position ¢, ; (sec Fig. 4.1a). The amount of the flux dif-
ference that will be added to the g7 ; ; consists of horizontal
and vertical parts. The horizontal part is the flux difference

related to this critical interval multiplied by («} , )* The
a X=Xj-1/2 X=X j+1/2
—
I l.(+”
|
S Sl VP
!
Y=Yi f
n N .
**——1’*——'"——-4" ——'“*—‘I - YSY-ts2
N
i | !
X=X'|1 X=Xi1+1
b X=|Xi,—1/2 | X=Xi1+1/|2
| | 1
! !
e P~ Tt T —{YEY
‘ ‘| ‘(a,ﬁﬂ UR | j+1/2
I | |
Y=Y, I f
L YL N 3
! =
b 4~ —-AR—-V—V,'—NQ
! I
| | |
l ! L
X=Xi1 X=Xi1+1
FIG. 4.1. (a) [x,,x;, ] is a critical mesh interval on the grid line

¥y =y, with discontinuity pesition Sri.;and normal oy ={al; . Bi. ).
The line segment L, ; for the critical mesh interval [y,, y;4 ] on the grid
line x=x, intersects the strip y,_,, € y<y;,,, with 48 The line
segment L, ., , for the critical mesh interval [y,_,, y;] on the grid line
x=x;, falls entirely into the strip. (b) A straight line discontinuity

separates the numerical selution into two parts, namely u,; and up,
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vertical part consists of the flux differences coming from the
nearby vertical critical intervals and is described below:

For a vertical critical interval [y, y;,,] at a grid line
x=x,;, we draw a line segment L, ;, which is centered at
11> located between lines x=x, ,, and x=x;,;, and
has the normal (&) ,, B, ). If L, intersects the strip
Yi—12 S Y < ;4 1, We denote by R the ratio of the lengths
of the part that falls into the strip and L, itself. For
example, since the line segment L, , for the vertical critical
interval [y;, y;,,] on the grid line x =x, intersects the
strip with the segment 48 (see Fig. 4.1a), R is equal to
|AB|/|L, ;|. For another example, since the whole line
segment L, ,, , falls into the strip, R is equal to 1. Then
the flux difference related to this vertical critical interval
multiplied by R(«} ; j)z goes to the vertical part mentioned
above.

The compensations of the local conservation errors to the
numerical solution are described as follows: Assume that
the discontinuity position crosses over the grid point
[x;, 1, ¥;], then it is easy to verify that the deduction of the
local conservation errors at this point is

“?.'L,j‘“?.ﬂ,;‘*Rlv (4.13)

where ], ; is the mean value of the extrapolated data

from the x and y directions at the level #, and R, is as

follows: If w]t’ . is updated+ lby Wiy 7, Ry is zero;
L P
otherwise, if it is updated by u} | |7 ;
— L, ~ 3 1, -
Ry=ul", L= T e {4.14)
where 47417 is the numerical solution computed using

only information from the “ —” side and u?% | | is the mean

value of the extrapolated data at the new level. This
deduction is shared by ¢%, ; and ¢}, ,,,.,. We let
{ai,fl,j)zf((a,’:,q‘j)z + (ﬂfq 1,1 )2) of it go to Q.'l,;,_p and
the remaining part is added to ¢}, , , ;.

Obviously, these accumulations and compensations can
be realized by properly choosing the p” and p.

We show the following relations between the local
conservation errors and the discontinuity positions,

g, = (a;,l,j)z (Eh—x;010)

x (ul, ,—ul)+O(h) (4.15)
for a horizontal critical interval [ x,, |, x;], and
4= B ) (= ¥y
x{u} . —u7;)+O(h) (4.10)

for a vertical critical interval [ ;. ., y;]. Indeed, {4.15) and
{(4.16) are the extension of (4.7) in two space dimensions. To
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do this, we show that for a piecewise constant solution with
straight line discontinuities, (4.15) and (4.16) are exact. This
implies that they are first-order accurate, in general.
Assume that the normal to the straight line discontinuity
is (a, f1), and on each side of the discontinuity the solution
is u, and wu, (as shown in Fig. 4.1b). In this case, it is easy
to verify that for each horizontal critical interval, the
horizontal part of the difference added to the local conserva-
tion error is ofZ{f{ug)— f(x,)), and the vertical part is
offA{g(ug) — g(u,)). Therefore, the total amount of the flux
difference added to the local conservation error is
A f(ug) = fluy)) +afrlglug)— glu,)).  (4.17)
When the discontinuity crosses over the left endpoint of the
criticat interval, the compensation from the local conserva-
tion error reduces to a’(u, —ug), and when the discon-
tinuity crosses over the right endpoint, the deduction is
@’ (1 —u,). The conclusion foliows easily from {3.13). The
conclusion for a vertical critical interval can follow in the
same way.

5. TREATMENT FOR INTERACTIONS OF
DISCONTINUITIES IN THE SCALAR CASE

The one-dimension treatment for critical cells that are
close to each other, and the “stacking treatment” that deals
with the critical cells stacking in the same cell, developed in
[13, 147, can be naively extended to the two-dimensional
case; thereflore, in this section we enly focus on the treat-
ment of the triple points where three discontinuities meet.

For simplicity, we only study the scalar case. Qur treat-
ment is based on the solution of the following problem:
Suppose that three discontinuities L, L,, and L, meeting
at the trip point, say O, are straight lines, They divide the
solution of (3.1) into three constant parts u,, u,, and u, (as
shown in Fig. 5.1). Suppose now that, given L, and L,, we
want to determine L,. Without losing generality we suppose
that  is the origin of the (x, y)-plane. Since L, separates u;
and u,, its normal propagating speed is

_ a [ fl22+P1[glas
[ulos ’

Sy (5.1)

where («,, f,) is the unit normal vector of L, [ f].; and
[ g]- ; are the jumps of the two fluxes across L, and [u], 3
is the jump of the solution across L,. Hence, the equation
for L, is

ayx+pfy=_81 (5.2)
the equation for L, is
ax+fry=235,1 (5.3)
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L,

Ly

FIG. 5.1. Three straight line discontinuities L,, L,, and L, meet at
paint O, separating three constant states u,, u,, and u4. G is the triple
point.

where

_ 2l 15+ Bl gls

S , 5.4
? [U]3_1 (>4)
and the equation for L should be
a3x+ﬁ3}’=53f, (5.5)
where
S3=°53[f:|'2.1+433[g]2,1 (5.6)

[”]2,1

and (23, f#;) is the unit normal vector of L; to be solved.
Because the straight lines L, L,, and L, meet at the same
point O, the determinant

ay B8
@, B2 S| =0, (37
a3 B 5,

from which and the restriction «% + 82 =1, a; and f, can be
computed. Particularly, when (x|, f,) and (a,, §,) are not
paraliel to each other, there exists &, and %, so that

ko + koo, =0,

ki, +k2182=53

kS +k,8,=35,.

(5.8)

Now we are going to build up the treatment of inter-
actions of discontinuities. We call the grid cell that contains
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the triple point a nede. The node should have three critical
intervals locating in its four grid intervals, which are related
to the three discontinuities, Two of the critical intervals
might stack in the same interval.

Figure 5.2 gives two typical cases of the propagation of
nodes. In Fig. 5.2a, the horizontal critical intervals CM|
and CM, related to disconttinuity L, and L, merge together
because their discontinuity positions cross over ¢ach other
and generate a new critical interval for L;. In this case, the
node advances from the cell M, to M,. In Fig. 5.2b, a verti-
cal critical interval CM, related to L, advances one interval
to the top; hence, the discontinuity L, loses its critical inter-
val CM,, which becomes a new critical interval related to
L;. In this case, the node moves from the cell M, to M,.
If we stipulate that only one of the three critical intervals of
the node could advance to its adjacent intervals in each
timestep, then more general cases can always be reduced to
one of the above cases.

The main point of the treatment for the two above cases
is to calculate the new discontinuity positions of L, by
assumning that L,, L,, and L, are straight lines, Obviously,
the treatment will only be first-order accurate since we
assume that the discontinuities are straight lines and the
solution is piecewise comstant near triple points. However,
when the solution is piecewise smooth and since the

a
b
£y
7
/ I
—— -+
L1 £2 t%3

La

FIG. 5.2. (a) Two horizontal critical mesh intervals €M, and CM,
related to L, and L, merge to generate a new critical mesh interval related
to L;. Meanwhile the node advances from cell M, to M. (b} Vertical criti-
cal mesh interval CAM related to L, advances one mesh interval to the top;
hence L; loses its critical mesh interval CM,, which becomes a critical
mesh interval related to L;. Meanwhile the node advances from cell M,
to M,.
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discontinuity interactions only happen at a rate of O(h?),
the overall algorithm is still second-order accurate.

Now we begin to discuss the case displayed in Fig. 5.2a.
Denote by ¢, and &7, the discontinuity positions of the
critical intervals CM, and CM,, which cross over each
other, by ¢ ,, the discontinuity position of the newiy
generated critical interval, and by (x,. y,), the coordinates
of the triple point O. Since L,, whose normal is {a,, f,),
passes through O, {7 |, 'which lies on £.,, satisfies

(5 —xg)+ By, — yo) =0, (5.9)
where y;, is the y-coordinate of the left end point of the
critical interval. By the same argument,

az(f;_z‘xo)‘kﬁz(yj.—}’o):() (5.10)

and

43(&% 35— xo) + Baly, — yo)=0. (5.11}
Multiplying (5.9) and (5.10) by k, and k, defined in (5.8),
summing them, subtracting (5.11) and using (5.8), we
obtain

" _klalé_:'] +k20‘2§,’;,2

x3 ]

A3

(5.12)

which is the formula to calculate £7 ..

For the case shown in Fig. 5.2b, we denote by &7 | the
discontinuity position of CM . By a similar argument, we
have

al(xil_x0)+ﬁl(6;,]_y0)=0 {5.13)
and {5.9) and (5.10), from which we obtain
;'3=k1(°'v1xi|+ﬁ1(§;;1— yjl))+szxzii‘2. (5.14)

Qs

The treatment also has a conservation feature in some
weak sense; however, its discussion will be quite com-
piicated and a forthcoming paper will mainly focus on it.

6. PROGRAMMING OF THE ALGORITHM

Although the algorithm is a front tracking method, its
programming is not as complicated as thought to be. In fact,
it couid be programmed in a shock capturing fashion with
little knowledge of the geometry of the tracked discon-
tinuities. This is possible because of the following two
reasons:

(1} The method tracks the discontinuity along grid lines
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rather than its normal direction, so that the computation
has been mainly kept on the regular grid.

(2} The method does not have {flow states at the tracked
discontinuity, so that there is no CFL-restriction on the
timestep caused by the calculation of these states.

The data structure for the tracked discontinuity are “criti-
cal intervals,” which contain the discontinuity positions, the
normals to the discontinuity at this position, the type of the
discontinuity, and the addresses of two geometric and two
physical neighboring critical intervals. The two geometric
neighboring critical intervals are the two adjacent critical
intervals related to the same discontinuity, and the two
physical neighboring critical intervals are the nearest left
and right critical intervals on the same grid line. The
geometric neighbor relation is required in computing the
normal to the discontinuity, and the physical neighbor rela-
tion is required when dealing with the critical intervals that
are close to each other or stack in the same interval.

The data structure for the discontinuity interaction point
are “nodes” which contain the addresses of the three critical
intervals on its edges. These critical intervals only have one
geometric neighboring critical interval, and their stencils for
computing the normals are picked from one side only.

The algorithm was programmed in FORTRAN 77;
however, the author recently learned from {2, 77 that C
could be a better language to deal with these types of data
structures, because its utilities poinrer and record can
effectively handle them.

The computation is implemented as [ollows: In each
predictor or corrector step of the algorithm, we first com-
pute the numerical solution without considering the critical

Y v

Compute u"t! without
considering critical
intervals.

M

Recompute unt!
at points near
critical intervals.

un=05(u" + unt?)

gr=08(6" +¢++)

L]

Update physical and
geometrical relation
for critical intervals.

o L |

FI1G. 6.1. The flow chart of the algorithm.
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intervals. Then we recompute the numerical solution at the
points near critical intervals. In the predictor step, we
should update the critical intervals and nodes and their
geometric and physical relations according to the new
discontinuity positions. Denote by u the numerical solution
and by £ the discontinuity position; Fig. 6.1 is the flow chart
of the program.
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7. NUMERICAL EXPERIMENTS

In this section we shall display four numerical examples
computed by using the treatment to track the discon-
tinuities. The numerical fluxes used in the underlying
scheme (3.2) for both fand g are the second-order TVD flux
described in [17]).

-1.0 -0.5 0.0 0.5 1.0
i 1 T 7T Lo
= =
0.5 6.5
7 5
7 i i A
RSN i
.o | 0.9
i
i
7
5, 7
X. 1
-0.5 A+ ! 0.5
[ | I 111
17 I
I
u I
as T
b A T e L
1.9 0.5 0.0 0.5 160
— —— —
20 f

-0 -0.5 ¢.0 0.5

FIG. 7.1, (a) Surface, r=2.0 (160 steps); (b} location of discontinuity, r= 2.0 (160 steps); (cj x =00, t = 2.0 (160 steps); (d} y =043, r=2.G (160

steps).



390 DE-KANG MAQ

ExaMPLE 1. This is an example for the linear case. The and periodic boundary conditions. The exact solution of

partial differential equation is this problem is

=0, <1, <1, 7.1
w,+ U+ U, lx] < 1, [y (7.1) W, o 1) = ug(x 1, p—1). (13)
with initial data

0.75 cos({x + y)n) cos((x~ y}n),  which has a discontinuity circle with radius /6. The mesh
u(x, v,0)=uy(x, y)= X2+ y1<06 ratio is chosen to be 0.5 and Ax = Ay =0.05. Figure 7.1a
0, otherwise shows the numerical solution at =2 {160 timesteps).
(7.2) Figure 7.1b shows the discontinuity circle of the numerical

b
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FIG. 72, (a) Surface, r = 16,0 (1280 steps); (b} location of discontinuity, r = 16.0 {1280 steps); (¢) x =00, r = 16.0 (1280 steps); (d} y =045, r=160
(1280 steps).
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solution, which is plotted by connecting the discontinuity
positions with line segments, Figures 7.1c and d show the
intersection surfaces of the numerical solution at x =0 and
¥=10.435, respectively, in which the circles represent the
numerical solution, and the solid lines represent the exact
solution. Figure 7.2 visualizes the solution at time =16
{1280 timesteps). We can see in the figures that both the
numerical solution and the discontinuity positions
approximate the exact solution quite well,

ExamPLE 2. The partial differential for this example is

u U+ u, = —pulu—1)(u—4), {(7.4)
which is a linear advection equation with a stiff source term
when u is large. This equation is interesting since it models
reacting flows. Many difference methods would produce
wrong propagating speed if its solution has a propagating
discontinuity (see [12]). Chang (see [1]) has used the
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subceil resoiution proposed by Harten (see [10]) to the
one-dimensional version of this problem and obtained very
good numerical results. Here, we use our treatment, which
is similar in some sense to Harten’s subcell technique (see
[147] for relevant discussion), to track the two-dimensional
propagating discontinuity.

The initial data is still {7.2), which indicates that the solu-
tion has the same propagating discontinuity curve as in the
previous example; A, 4x, and 4y are chosen as before. A
Strang-type splitting method suggested in [127 is used to
solve this problem, in which the same numerical solution
operator with our treatment solves the convection equation
without the source term, and an implicit predictor—correc-
tor method for ordinary differential equations models the
chemistry. Figure 7.3a shows the numerical solution for
#=0.15 (non-stiff ) at time r=1, and Fig. 7.3b shows the
discontinuity circle at the same time. Figures 7.4 visualize
the solution when g = 150 (stiff ). In the plots we see that the
numerical solutions for both stiff and non-stiff cases have
correct propagating speeds.
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1 i
| |
i i
=nEED EEEEw
) -
I i I 1] N 111
e
¥d | T H S
7 I AT
!
P By
I { i
1.0 imaaE | ! - 1.3
| B
7
|
7
0.5 { ! _Ja.s
| |
7] I
T . ENEEEN
1154 =71 1T
1 e
1 13 ! | | 1
T | i ] I
og T T I ! .
.0 0.5 10 15 2.0

FIG. 73. (a) Sutface, t =10 (£ =0.15); (b} location of discontinuity,
r=10{u=015).
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FIG. 74. (a)Surface, t = 1.0 (1= 150.0); (b) location of discontinuity,
=10 (=1500).
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FIG. 7.5. (a)Surface, 1 = 1.0 (160 steps); (b) tocation of discontinuity, £ = 1.0 (160 steps); (¢} x = 0.0, 1 = 1.0 (160 steps); (d} ¥y =0.0, r = 1.0 (160 steps).
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DENSITY

N £
CONTOUR FROM G TO 27.61 BY .49

SRR AT NN T

CONTQUR FROM —6.6 TO 0 BY 4

y-VELOCITY
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F1G. 78. Flow at time 0.12 computed on a grid with dx = Ay = &: (a) density; (b) x-velocity; (¢) y-velocity; (d) pressure; (e)_is the discontinuity

curve,

ExaMmpLE 3. This is an example for the nonlinear case,

The partial differential equation is
u,+(3u%)+ (1), =0,

with the Riemann initial data,

Uy, x>0, y>0,
Uy, x<0, y>0,
s, x£0, y=0,
g, x>0, y<0.

u(x, y, 0)=up(x, y)=

The following three cases are tested:
Case 1,
(24y, tay Uy, u,)=(—0.2,—-1.0,0.5, 0.8).
Case 2,
(i, uy, 5, u)=(—10,0.5,-02, 0.8}
Case 3,
(uy, ty, tq, uy)=(—1.0,--0.2,05,038).

(1.5)

4 is still chosen to be 0.5 and Ax and Ay are chosen to be
0.025. Figures 7.5, 7.6, and 7.7 show the numerical results at
time =1 in Case 1, Case 2, and Case 3, respectively. All
the plots labeled with “a” show the numerical solutions; all
the plots labeled with “b” show the discontinuity positions
of the numerical solutions, in which the circles represent the
numerical positions and the solid lines represent the exact
discontinuity curves; and all the plots labeled with “c” and
“d” show the intersection surfaces of the numerical solution
at x=0and y =0, respectively. In these figures, we can see
that both the numerical solutions and the discontinuity
positions approximate the exact ones very well.

The discontinuity curve in Case 2 has a very sharp
corner; however, Fig. 7.6b shows that the computation of
the discontinuity positions around this corner is stable and
still has a reasonable resolution. Case 3 has a triple point
formed in the interaction of discontinuities. The treatment
for interactions is applied around and the result is quite
good.

ExaMpLE 4. This example is a regular shock reflection
of the Euler equations of gas dynamics. A planar shock
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wave drives down a tube and meets the reflecting wall of the
tube with a small angle. When the wall begins to slope, a
regular shock reflection occurs which develops a self-similar
flow. The example involves a Mach 10 shock in the air
(y=14), which initially makes a 30° angle with the
reflecting wali.

The reflecting wall lies along the bottom of the problem,
beginning at x = ;5. The shock makes a 30° angle with the
x axis and extends to the top of the domain at y=1,
The short region from x=0 to x = along the bottom
boundary at y =0 is always assigned values for the initial
post-shock flow. This boundary condition forces the
reflecting shock to be “attached” to the reflecting wall. The
left-hand boundary is also assigned values for the initial
post-shock flow, and the right-hand and top boundaries are
set to describe the exact motion of the initial Mach 10
shock.

We track the incident shock as well as the reflected shock.
The reflecting point is treated as a boundary point. The two-
dimensional Riemann problem related to this regolar reflec-
tion is solved to find the data that updates the numerical
solution at the boundary grid points crossed over by the
shock. At the initial level, a bubble with the size about 1o

T T TR TR TR TR TR

TR AR TR

b

DENSITY *—~VELOCITY

y—VELOCITY

PRESSURE

FIG. 79. Flow time 0.12 computed on a grid with dx=dy =72
{a} density; (b} companson between the numerical solutions with and
without the treatment at x =0.5.

DE-KANG MAO

of the grid cell in area is set for the region enclosed by the
reflected shock around the boundary grid point x = 2. The
numerical experiments show that the result is insensitive to
the shape of the bubble.

The flow at time 0.12, computed on a grid with dx=
Ay = 35, is displayed in Fig. 7.8, in which the plots a, b, c,
and d are the density, x-velocity, y-velocity, and pressure,
respectively, and Fig. 7.8e displays the discontinuity curve.
The discontinuity displayed in Figs. 7.8a to d has wiggles,
because the contour package represents the solution in the
critical intervals still as a smooth function.

To validate the method, we also display the numerical
result at the same time, computed on a grid with
Ax=Ay=+%, and without the treatment, in Fig. 7.9.
Figure 7.9a is the density and Fig. 7.9b displays the com-
parison between the numerical solutions with and without
the treatment at the intersection x = 0.5, where the circles
and the solid lines are the solution with and without the
treatment, respectively. This figure shows excellent agree-
ment of both numerical soiutions.

8. CONCLUSIONS

We have built up a treatment for discontinuities for the
two-dimensional conservation laws, which extends the one-
dimensional treatment introduced in [13]. We also have
studied the conservation feature of the treatment for an
isolated discontinuity. To do this, we wrote the overall algo-
tithm in a conservation-like form involving local conserva-
tion errors and showed that the local conservation errors
are uniformly bounded. Treatment for interactions of dis-
continuities has been also set up; however, the study of its
conservation feature is still under investigation. Numerical
experiments show that the treatment is a very effective
tracking technique.
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Medium frequency plasma behavior can be investigated using an
MHD model with the addition of the Hall term to the.Ohm's law. Such
a model embodies some electron dynamics and can therefore be used
to investigate physically more complicated processes than a conven-
tional MHD model can. From the modeling standpoint, this model
works on the ion time scale and therefore avoids the shorter electran
time scale associated with a two-fluid approach. Here, we present one
such model with jts two as well as three-dimensional versions, test it
thoroughly against the linear analytic theory, and finally present an
application of the model to the study of the plasma waves generated at
a solar wind cometary gas interface.  © 1993 Academic Prass, Inc.
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R o=

INTRODUCTION

Conventional ideal magnetohydrodynamics serves as an
excellent tool in investigating low frequency plasma
behavior {e.g., @ € w,;), in which domain both the electrons
and the ions can respond to an externaily applied electric
field and move at the cE x B/B* velocity. QOver distances
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larger than a Debye length no significant electric fields can
exist in a frame of reference moving with the plasma and the
electrons and the ions flow together.

The set of electrons and ions together behave mainly as a
charge neutral fluid. Any magnetic fields, in the ideal case
(e.g., where no resistivity or other dissipation is manifested),
become frozen in the fluid and move along with it. In this
domain the frequencies are mainly associated with ion
inertia and magnetic restoring forces. The electrons move to
matintain charge neutrality and by applying this constraint
they can be eliminated (rom the problem.!

As one begins to investigate the next higher frequency
domain (i.e., where w ~ ), one enters a domain in which
the ions start to slip across the magnetic field relative to the
electrons and the electrons must move along B to maintain
charge neutrality. Thus, as one would expect, the electron
and ion fluids no longer flow together and a two-fluid treat-
ment is required. A two-fluid approach suits ones needs.
However, if the full eiectron dynamics are kept, the highest
frequencies are the electron cyclotron and plasma frequen-
cies and one is obliged to use correspondingly short time
scales; this would limit one to very short time simulations.

It turns out, however, that many important results of the
two-fluid model can be obtained from a zero mass electron
approximation in which the eiectrons are always in force
balance (no electron oscillations). To achieve this, one must
add the Hail term to Ohm'’s law. Therefore, many important

! Electron motion along the magnetic field can be important here.



